References

Chapuis, G., Templeton, D. H. \& Templeton, L. K. (1985). Acta Cryst. In the press.
Engel, D. W., Takusagawa, F. \& Koetzle, T. F. (1984). Acta Crl'st. C40, 1687-1693.
Hoard, J. L., Lee, B. \& Lind, M. D. (1965). J. Aim. Chem. Soc. 87. 1612-1613.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Koetzle, T. F. \& Hamilton, W. C. (1975). Anomalous Scattering, edited by S. Ramaseshan \& S. C. Abrahams. pp. 489-502. Copenhagen: Munksgaard.
Nassimbeni, L. R., Wright. M. R. W.. van Niekerk, J. C. \& McCallum, P. A. (1979). Acta Cr!'st. B35, 1341-1345.
Templeton, D. H. (1960). Z. Kristallogr. 113, 234-240.
Templeton, L. K., Templeton, D. H., Zalkin, A. \& Ruben, H. W. (1982). Acta Cryst. B38, 2155-2159.

Structure of μ-Oxo-bis[(2-hydroxyethanesulfonato)triphenylantimony(V)], $\left[\mathbf{S b}_{2} \mathbf{O}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\right]$

By Hans Preut, Robert Rüther and Friedo Huber*
Lehrstuhl für Anorganische Chemie II, Universität Dortmund, Postfach 500 500, D-4600 Dortmund 50. Federal Republic of Germany

(Received 1 April 1984; accepted 3 December 1984)

Abstract. $\quad M_{r}=972 \cdot 39$, monoclinic, $P 2_{1} / c, \quad a=$ 10.861 (4),$\quad b=19.916$ (6),$\quad c=9.075$ (4) $\AA, \quad \beta=$ $94 \cdot 15(5)^{\circ}, U=1958 \AA^{3}, Z=2, D_{x}=1.649 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Мо $K \alpha)=0.71069 \AA, \quad \mu=1.56 \mathrm{~mm}^{-1}, \quad F(000)=$ $972, T=294$ (1) K. Final $R=0.032$ for 2727 unique observed X-ray diffractometer data. Two only slightly distorted trigonal-bipyramidal units $(\mu-\mathrm{O})-\mathrm{SbPh}_{3}-\mathrm{O}-$ $\mathrm{S}\left(\mathrm{O}_{2}\right) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}$ with O atoms in apical and C (phenyl) atoms in equatorial positions are linked via a linear $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge. The $\mathrm{Sb}-\mu-\mathrm{O}$ bond of 1.936 (1) \AA is rather short. The $\mathrm{Sb}-\mathrm{O}$ bond to the unidentately coordinated sulfonate group $[2 \cdot 276$ (4) \AA I appears to have appreciably high ionic character.

Introduction. The chemistry of triorgano-Group V element sulfonates is rather unexplored and structures of such compounds are unknown. We recently obtained for the first time, by reaction of $\mathrm{Ph}_{3} \mathrm{SbO}\left(\mathrm{Ph}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ with sulfonic acids in different solvents, antimony compounds which correspond to the formula $\left(\mathrm{Ph}_{3} \mathrm{SbO}_{3} \mathrm{~S} R\right)_{2} \mathrm{O}\left(\mathrm{HO}_{3} \mathrm{~S} R=\right.$ sulfonic acid $)$ having, according to spectroscopic data, an $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge. Compounds of the type $\left(R_{3} \mathrm{Sb} X\right)_{2} \mathrm{O}(R=$ organogroup, $X=$ anionic ligand) may have a bent $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge, as in $\left(\mathrm{Ph}_{3} \mathrm{SbN}_{3}\right)_{2} \mathrm{O}\left(\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}: 139.8^{\circ}\right.$, Ferguson \& Ridley, 1973), or a linear bridge as in $\left(\mathrm{Ph}_{3} \mathrm{SbOOC}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{O}$ (Starikova, Shchegoleva, Trunov \& Pokrovskaya, 1978). To obtain more facts about influences which determine the type of bridge in distiboxane and also to learn more about the coor-

[^0]0108-2701/85/030358-03\$01.50
dination of the sulfonate group with organoelement moieties (a field which has also been neglected) we started to determine the crystal and molecular structure of organoantimony sulfonates and report here the structure of $\left(\mathrm{Ph}_{3} \mathrm{SbO}_{3} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2} \mathrm{O}$.

Experimental. $\left(\mathrm{Ph}_{3} \mathrm{SbO}_{3} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2} \mathrm{O}$ crystallizes from a solution of 10 mmol isethionic acid and 10 $\mathrm{mmol} \mathrm{Ph}_{3} \mathrm{SbO}$ in 250 ml acetone after standing for 1 d . Crystal size $0.32 \times 0.29 \times 0.10 \mathrm{~mm}, \omega / 2 \theta$ scan, scan speed $0.04-0.01^{\circ} \mathrm{s}^{-1}$ in θ, Nonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha$ radiation; lattice parameters from least-squares fit with 25 reflexions in range $9.3 \leq \theta \leq 14.0^{\circ}$; three standard reflexions recorded every 4 h , only random deviations; 3799 reflexions, $1 \leq \theta \leq 25^{\circ}, \quad-10 \leq h \leq 10$, $0 \leq k \leq 23,0 \leq l \leq 12$; after averaging 3541 unique reflexions, 2727 with $I>3 \sigma(I)$, Lorentz-polarization correction and absorption correction via ψ scans; systematic absences: $(h 0 l) l=2 n+1$, ($0 k 0$) $k=2 n+1$, space group $P 2_{1} / c$; structure solution via Patterson function, ΔF syntheses and full-matrix least-squares refinements with anisotropic temperature factors for all non-H atoms; complex neutral-atom scattering factors from Cromer (1974) and Cromer \& Waber (1974). H atoms placed in geometrically calculated positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$) and not included in structure-factor calculation. Least-squares refinement based on F and 241 refined parameters, $R=0.032$, unit weights; max. Δ / σ for all parameters 0.02 , av. $<0 \cdot 00$; no significant features in final ΔF synthesis; programs: Enraf-Nonius $S D P$ (1978), ORTEP (Johnson, 1976) and POP1 (van de Waal, 1976).
(c) 1985 International Union of Crystallography

Discussion. The structure of the title compound is shown in Fig. 1 and in a stereoview in Fig. 2. Positional parameters and equivalent values of the anisotropic temperature factors are given in Table 1,* bond lengths and angles in Table 2.

The unit cell contains two centrosymmetrical molecules with a linear $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge as the central part. The O atom of this bridge resides on a center of symmetry. The atoms bound to Sb form a slightly distorted trigonal bipyramid with the three C (phenyl) atoms in the equatorial plane and the two O atoms in the apical positions. Through the center of symmetry the phenyl rings at the Sb atoms are in staggered positions. The dihedral angles between the least-squares planes through the phenyl groups and the plane perpendicular to the $\mathrm{Sb}(1)-\mathrm{O}(5)$ direction are 4.5 (5), 118.2 (5) and $38.7(5)^{\circ}$. The sulfonate group is unidentately coordinated. From a comparison of the

Fig. 1. General view of the molecule, showing atom numbering.

Fig. 2. Stereoscopic view of the molecule.
bond lengths with those in sulfonic acid esters $[\mathrm{S}-\mathrm{O}: 1.602$ (8), $\mathrm{S}=\mathrm{O}: 1.431$ (9), 1.426 (8) \AA, Wieczorek, Bokii \& Struchkov, 1975; S-O:1.589 (2), $\mathrm{S}=\mathrm{O}: 1.431$ (9), 1.426 (8) \AA, Williams, Ando, Bloor \& Hursthouse, 1979] it can be inferred that the $\mathrm{Sb}-\mathrm{O}$ (1) bond has an appreciably high ionic character. This corresponds (i) with the fact that the $\mathrm{Sb}(1)-\mathrm{O}(1)$ bond is about $0 \cdot 24$ (1) \AA longer than in other comparable Sb compounds (Shen, McEwen, La Placa, Hamilton \&

Table 1. Fractional atomic coordinates and equivalent isotropic B values (\AA^{2})

$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Sb (1)	$0 \cdot 14258$ (3)	0.04966 (2)	0.08059 (4)	2.43 (1)
S(1)	$0 \cdot 3902$ (1)	$0 \cdot 15667$ (7)	0.1339 (2)	3.08 (3)
$\mathrm{O}(1)$	0.3153 (3)	$0 \cdot 1001$ (2)	0.1859 (4)	3.41 (8)
$\mathrm{O}(2)$	0.4909 (4)	$0 \cdot 1320$ (2)	0.0546 (5)	4.5 (1)
$\mathrm{O}(3)$	0.3149 (4)	0.2065 (2)	0.0577 (5)	$4 \cdot 5$ (1)
$\mathrm{O}(4)$	0.6079 (4)	0.2726 (2)	0.3941 (5)	4.5 (1)
$\mathrm{O}(5)$	0.000	0.000	0.000	$4 \cdot 0$ (1)
C(1)	0.4563 (5)	$0 \cdot 1926$ (3)	0.3022 (6)	$3 \cdot 6$ (1)
C(2)	0.5321 (6)	$0 \cdot 2538$ (4)	0.2656 (7)	4.9 (1)
C(11)	0.2255 (5)	0.0556 (3)	-0.1205 (6)	$3 \cdot 1$ (1)
C(12)	$0 \cdot 2985$ (7)	0.0025 (4)	-0.1632 (8)	5.0 (2)
C(13)	0.3479 (8)	0.0070 (4)	-0.3016 (9)	$6 \cdot 7$ (2)
C(14)	0.3223 (8)	0.0619 (5)	-0.3926 (8)	$6 \cdot 6$ (2)
C(15)	0.2521 (7)	$0 \cdot 1155$ (4)	-0.3472 (8)	$6 \cdot 0$ (2)
C(16)	$0 \cdot 2014$ (6)	$0 \cdot 1124$ (4)	-0.2075 (7)	4.5 (1)
C(21)	0.0406 (5)	$0 \cdot 1312$ (3)	$0 \cdot 1545$ (6)	2.7 (1)
$\mathrm{C}(22)$	-0.0729 (5)	0.1444 (3)	0.0825 (7)	3.7 (1)
C(23)	-0.1451 (6)	$0 \cdot 1975$ (4)	0.1337 (8)	$4 \cdot 8$ (2)
C(24)	-0.1016 (7)	0.2338 (3)	0.2566 (7)	$4 \cdot 7$ (1)
C (25)	0.0119 (6)	$0 \cdot 2197$ (3)	0.3290 (7)	$4 \cdot 3$ (1)
C(26)	0.0862 (6)	0.1685 (3)	0.2775 (6)	$3 \cdot 5$ (1)
C(3)	$0 \cdot 1932$ (5)	-0.0233 (3)	0.2398 (6)	2.9 (1)
$\mathrm{C}(32)$	0.3120 (6)	-0.0500 (3)	0.2553 (7)	$4 \cdot 1$ (1)
C(33)	0.3354 (7)	-0. 1007 (3)	0.3605 (8)	$5 \cdot 5$ (2)
C(34)	0.2449 (8)	-0.1228 (4)	0.4461 (8)	$5 \cdot 9$ (2)
$\mathrm{C}(35)$	$0 \cdot 1276$ (8)	-0.0955 (4)	0.4298 (8)	$6 \cdot 2$ (2)
C(36)	0.1004 (6)	-0.0448 (4)	0.3251 (7)	$4 \cdot 5$ (1)

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Sb}(1)-\mathrm{C}(11)$	$2 \cdot 096(5)$	$\mathrm{S}(1)-\mathrm{O}(2)$	$1.438(4)$
$\mathrm{Sb}(1)-\mathrm{C}(21)$	$2 \cdot 103(5)$	$\mathrm{S}(1)-\mathrm{O}(3)$	$1.431(4)$
$\mathrm{Sb}(1)-\mathrm{C}(31)$	$2.095(5)$	$\mathrm{S}(1)-\mathrm{C}(1)$	$1.789(6)$
$\mathrm{Sb}(1)-\mathrm{O}(1)$	$2.276(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.522(9)$
$\mathrm{Sb}(1)-\mathrm{O}(5)$	$1.936(1)$	$\mathrm{C}(2)-\mathrm{O}(4)$	$1.428(8)$
$\mathrm{S}(1)-\mathrm{O}(1)$	$1.487(4)$		
$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{C}(21)$	$120 \cdot 2(2)$	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	$103.1(3)$
$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{C}(31)$	$122 \cdot 2(2)$	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	$115 \cdot 1(3)$
$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{O}(1)$	$87.0(2)$	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(1)$	$106.9(3)$
$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{O}(5)$	$94.7(1)$	$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(1)$	$108.4(3)$
$\mathrm{C}(21)-\mathrm{Sb}(1)-\mathrm{C}(31)$	$115.7(2)$	$\mathrm{Sb}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.2(4)$
$\mathrm{C}(21)-\mathrm{Sb}(1)-\mathrm{O}(1)$	$87.8(2)$	$\mathrm{Sb}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$117.7(4)$
$\mathrm{C}(21)-\mathrm{Sb}(1)-\mathrm{O}(5)$	$95.2(1)$	$\mathrm{Sb}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$118.0(4)$
$\mathrm{C}(31)-\mathrm{Sb}(1)-\mathrm{O}(1)$	$81.3(2)$	$\mathrm{Sb}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	$120.0(4)$
$\mathrm{C}(31)-\mathrm{Sb}(1)-\mathrm{O}(5)$	$93.9(1)$	$\mathrm{Sb}(1)-\mathrm{C}(31)-\mathrm{C}(32)$	$122.0(4)$
$\mathrm{O}(1)-\mathrm{Sb}(1)-\mathrm{O}(5)$	$175.2(1)$	$\mathrm{Sb}(1)-\mathrm{C}(31)-\mathrm{C}(36)$	$115.8(4)$
$\mathrm{Sb}(1)-\mathrm{O}(1)-\mathrm{S}(1)$	$130.9(2)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.9(4)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$110.7(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(4)$	$108.7(5)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	$111.8(2)$	$\mathrm{Sb}(1)-\mathrm{O}(5)-\mathrm{Sb}\left(1^{\prime}\right)$	180

The $\mathrm{C}-\mathrm{C}$ bond lengths and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in the phenyl groups range from 1.37 (1) to 1.420 (9) $\AA \mid$ mean: 1.39 (1) $\AA \mid$ and from $117 \cdot 6$ (6) to $123 \cdot 1(5)^{\circ} \mid$ mean: $120 \cdot 0(7)^{\circ} \mid$ respectively.

Wolf, 1968) and (ii) that the angle $\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(3)$ of $115 \cdot 1(3)^{\circ}$ is smaller than the corresponding angle in sulfonic acid esters [120.0(1) ${ }^{\circ}$, Wieczorek et al., 1975; $119.2(5)^{\circ}$, Williams et al., 1979] but larger than in ionic sulfonates [112.2 (8) ${ }^{\circ}$, Couldwell, Prout, Robey, Taylor \& Rossotti, 1978].

H of the isethionate hydroxy group, which is clearly represented by $\nu(\mathrm{OH})$ at $3380 \mathrm{~cm}^{-1}$ in the IR spectrum (same position as in sodium isethionate), was not localized. A short intermolecular $\mathrm{O}(4) \cdots \mathrm{O}(2)\left(x, \frac{1}{2}-y\right.$, $\frac{1}{2}+z$) distance of 2.760 (6) \AA could be correlated with a hydrogen bridge between these atoms. The existence of a hydrogen bridge is also indicated by the position and broadness of $v(\mathrm{OH})$.

A linear $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge between pentacoordinated Sb atoms was also found in μ-oxo-bis (tert-butylperoxotriphenylantimony) (Starikova et al., 1978) and in $\quad \mu$-oxo-bis $[$ tris $(p$-chlorophenyl)($1,1,1$-trifluoro- 2,4 -pentanedionato- O, O^{\prime})antimony (V)-chloroform ($1 / 2$), in which Sb , however, is hexacoordinated (Ebina, Ouchi, Yoshino, Sato \& Saito, 1978). The $\mathrm{Sb}-\mu$ - O bond lengths in these compounds are comparable Ithis work: $1.936(1) \AA ;\left(\mathrm{Ph}_{3} \mathrm{SbOO}-\text { tert- } \mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{O}$: 1.974 (2) $\AA ;\left[\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{SbCF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}(\mathrm{CO}) \mathrm{CH}_{3}\right]_{2}$ $0.2 \mathrm{CHCl}_{3}: 1.943 \AA, \sigma<0.0004 \AA$].

The interesting question of whether a bent or a linear $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge should be expected in a certain distiboxane still cannot be answered. Deviations of the $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ angle in distiboxanes from the tetrahedral angle have been correlated with intramolecular repulsions between the two halves of the specific molecules (Ferguson \& Ridley, 1973). For linear bridges interaction of the electron pairs of O with empty d orbitals of Sb was discussed (Starikova et al., 1978; see also

March \& Ferguson, 1975). This interpretation would be consistent with the observation of rather short $\mathrm{Sb}-\mu-\mathrm{O}$ bonds in the compounds with linear $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridges.

A grant by Wasag Studiumsstiftung (RR) and financial support by Fonds der Chemischen Industrie are gratefully acknowledged.

References

Couldwell, C., Prout, K., Robey, D., Taylor, R. \& Rossotti, F. J. C. (1978). Acta Cryst. B34, 1491-1499.

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crysiallography, Vol. IV, Table 2.2.B. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Ebina, F., Ouchi, A., Yoshino, Y., Sato, S. \& Saito, Y. (1978). Acta Cryst. B34, 2134-2138.
Enraf-Nonius (1978). Structure Determination Package. EnrafNonius, Delft.
Ferguson, G. \& Ridley, D. R. (1973). Acta Cryst. B29, 2221-2226.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
March, F. C. \& Ferguson, G. (1975). J. Chem. Soc. Dalton Trans. pp. 1291-1294.
Shen, K., McEwen, W. E., la Placa, S. J., Hamilton, W. C. \& Wolf, A. P. (1968). J. Am. Chem. Soc. 90, 1718-1723.
Starikova, Z. A., Shchegoleva, T. M., Trunov, V. K. \& Pokrovskaya, J. E. (1978). Sov.-Phys. Crystallogr. 23, 547549.

Wall, B. W. van de (1976). POP1. Plot of packing program. Twente Univ. of Technology, The Netherlands.
Wieczorek, M. W., Bokii, N. G. \& Struchkov, Yu. T. (1975). Acta Cryst. B31, 2603-2606.
Williams, R. L., Ando, D. J., Bloor, D. \& Hursthouse, M. B. (1979). Acta Cryst. B35, 2072-2074.

Acta Cryst. (1985). C41, 360-363

Structure of Acetato(acetylacetonato)diaquacalcium, $\left[\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

By J. J. Sahbari and M. M. Olmstead*
Department of Chemistry, University of California, Davis, CA 95616, USA

(Received 14 September 1984; accepted 1 November 1984)

Abstract

M_{r}=234.27, \quad P \overline{1}, \quad a=6.524\) (1),$\quad b=$ 6.851 (1),$\quad c=12.504$ (1) $\AA, \quad \alpha=87.70$ (1),$\quad \beta=$ 81.42 (1) $, \quad \gamma=71.21(1)^{\circ}, \quad Z=2, \quad V=523.2(1) \AA^{3}$, $D_{m}(298 \mathrm{~K})=1.48 \mathrm{~g} \mathrm{~cm}^{-3}, \quad D_{x}(140 \mathrm{~K})=1.49 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=5.74 \mathrm{~cm}^{-1}, \quad T=140 \mathrm{~K}$, $F(000)=208,1953$ unique observed reflections, R $=0.031$. A distorted dodecahedral arrangement of eight O atoms surrounds each Ca^{2+} ion. The ligation (average $\mathrm{Ca}-\mathrm{O}$ distances in parentheses) consists of

[^1]0108-2701/85/030360-04\$01.50
one chelating acetylacetonate ($2 \cdot 390 \AA$), two waters $(2.498 \AA)$, two monodentate acetates $(2.349 \AA)$ and one bidentate acetate ($2.563 \AA$) which provides a cross-link to a centrosymmetrically related chain.

Introduction. The crystal structure determination of the title compound was undertaken to check the stoichiometry of the crystals, which were known to contain acetylacetonate yet differ from the previously determined structure of $\left[\mathrm{Ca}(\text { acetylacetonate })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Sahbari \& Olmstead, 1983). The phosphorescence and

[^0]: * To whom correspondence should be addressed.

[^1]: * Author to whom correspondence should be addressed.

